Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids.
نویسندگان
چکیده
Allopolyploidy is formed by combining two or more divergent genomes and occurs throughout the evolutionary history of many plants and some animals. Transcriptome analysis indicates that many genes in various biological pathways, including flowering time, are expressed nonadditively (different from the midparent value). However, the mechanisms for nonadditive gene regulation in a biological pathway are unknown. Natural variation of flowering time is largely controlled by two epistatically acting loci, namely FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates FLC expression that represses flowering in Arabidopsis. Synthetic Arabidopsis allotetraploids contain two sets of FLC and FRI genes originating from Arabidopsis thaliana and A. arenosa, respectively, and flower late. Inhibition of early flowering is caused by upregulation of A. thaliana FLC (AtFLC) that is trans-activated by A. arenosa FRI (AaFRI). Two duplicate FLCs (AaFLC1 and AaFLC2) originating from A. arenosa are expressed in some allotetraploids but silenced in other lines. The expression variation in the allotetraploids is associated with deletions in the promoter regions and first introns of A. arenosa FLCs. The strong AtFLC and AaFLC loci are maintained in natural Arabidopsis allotetraploids, leading to extremely late flowering. Furthermore, FLC expression correlates positively with histone H3-Lys4 methylation and H3-Lys9 acetylation and negatively with H3-Lys9 methylation, epigenetic marks for gene activation and silencing. We provide evidence for interactive roles of regulatory sequence changes, chromatin modification, and trans-acting effects in natural selection of orthologous FLC loci, which determines the fate of duplicate genes and adaptation of allopolyploids during evolution.
منابع مشابه
Analysis of the molecular basis of flowering time variation in Arabidopsis accessions.
Allelic variation at the FRI (FRIGIDA) and FLC (FLOWERING LOCUS C) loci are major determinants of flowering time in Arabidopsis accessions. Dominant alleles of FRI confer a vernalization requirement causing plants to overwinter vegetatively. Many early flowering accessions carry loss-of-function fri alleles containing one of two deletions. However, some accessions categorized as early flowering...
متن کاملFRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions.
FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) are two genes that, unless plants are vernalized, greatly delay flowering time in Arabidopsis thaliana. Natural loss-of-function mutations in FRI cause the early flowering growth habits of many A. thaliana accessions. To quantify the variation among wild accessions due to FRI, and to identify additional genetic loci in wild accessions that influence flo...
متن کاملDiversity of Flowering Responses in Wild Arabidopsis thaliana Strains
Although multiple environmental cues regulate the transition to flowering in Arabidopsis thaliana, previous studies have suggested that wild A. thaliana accessions fall primarily into two classes, distinguished by their requirement for vernalization (extended winter-like temperatures), which enables rapid flowering under long days. Much of the difference in vernalization response is apparently ...
متن کاملRole of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis.
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simp...
متن کاملEstablishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis.
In Arabidopsis thaliana, flowering-time variation exists among accessions, and the winter-annual (late-flowering without vernalization) versus rapid-cycling (early flowering) growth habit is typically determined by allelic variation at FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates the expression of FLC, a central floral repressor, to levels that inhibit flowering, resulting in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 173 2 شماره
صفحات -
تاریخ انتشار 2006